OpenAS2 Server Application

Table of Contents

1. INETOAUCTION. ...ttt ettt ettt ettt e sttt e e sat e s bt et e e st e be e b e sae e st easeeste st ebesanesneennesnnen 2
2. GLOSSATY .c.uutieeiiieiiieeeciee et et e ettt e et e e ettt e e te e s ae e s st e e e aae e e ste e e be e e e aae e e bt e e et e e ensaaeensaaeensaeeenaaeeearaean 2
3. INStaAlling OPENAS2.....ccueiiiiieieeeete ettt ettt ettt e st e st e st e e bt e sabeebeessbe e beesabesbaesaneesaens 2
3.1, SyStem REQUITEIMENILS.ceeeriuriererrireereeiiteeeeniieeeeesiteeeessrreeeessssaeesssssseeesssssseeesssssseesssssseessssnnne 2
3.2. Installing APPIICAtION.eiiuiiriiiiieeieeteee ettt ettt et ettt et eae e st e ebe e s b e ebaesatessseennee 3
3.3, TUNINEG JAVA...utttiiiiiiiieeeeiteeeette ettt e et e e e sttt e e e s satt e e e s aaeeesssasaeesssssaeesssassaeesnsnsaaessssnsaeesnnnne 3

A, CONTIGUIALION.eevieeiteeiieeteesit e et et et e et e st e st estbeesaeesabeebtessbessseesaseensaessseasaesaseensaesssesseennsesnsaennns 4
4.1. Application ConfigUration............ceeeveriieerieeiieiiieeiteesteeteeseesteesreesaeessaessseesseessseesssesssessseenss 4
4.1.1. Overriding Certificate Store Password...........cocceeervierienienienienenienteseeeeeeesre e 5
4.1.2. Resend Retry Configuration...........cccecveeiueeiieeiiienieeieeiieeieeseesveesteesseesseesssessseesssessseenns)

4.2, Partner CONfiGUIAtiON.ocueirueirieriierieeiteeitteete et e e et esteesteesbeesbeesabeesseesasesbaessseenseesssesnses 6
4.2.1. Partner Definition........ccceviiririinieieeeseeseet ettt ettt st 6
4.2.2. Partnership Definition........cocciviiiiiiniiiieiieeeeeee ettt 7
4.2.3. Transfer ENCOMING.......c.ccovieiiiiiieeiieiieeieeseeeieeseeeteesieeesteesteessaessseessseesseessseeseesssesssesnnns 7
4.2.4. Supported Encoding AlGOTithms............cocuieriiiiiiiniieiienieeteeecte et 7
4.2.5. MeSSaZe COMPIESSION......uttiirrureeeerirreererirreeeenssteeeasisseeesssisseessssseeesssssseessssssseessssssseessssnns 8
4.2.6. Custom Mime HEAdeTS.........ccteriiriiriiiieieniteierteseeteet ettt st sv ettt sae e ne e 8
4.2.6.1. Static Header ValUes..........cocuiiriiiiiiiieeieeeeteeee ettt et 8

4.2.6.2. Dynamic Header Values From File Name..........cccccoceveriiinieninneninninieneeseneeneene 8
Delimiter IMOAE........ceeuiiiiiieieeite ettt ettt s e st e bt e st e s b e e s st e e s e sneeeanes 9

Regular EXPression MOME..........c.covieeiiiriirniiinieeieeniessitesteeie st st esteeseesaessseeseeesaaenes 9

4.2.6.3. Adding Custom Headers To HTTP.........cccceeeviiiriiiiiieiniieerieecrree e e e sne e 10

4.2.7. Setting Dynamic Attributes From File Name.........ccccccceeveriinirnenienenieneeseneeneeeenee 10

4.3. Certificate CONfigUIation..........cccuiervieriiiieiieeiienieeieeete et e ste et e eteesteessaeessaessseesseesssesssnessseens 11
4.3.1. Creating And IMPOTHING.......cccueerieriiirrieriitenieeiteste et ste et estesbeesteeseesaaessbaesbeesseesane 11
4.3.2. Supporting Multiple Private CertifiCates.........cceeeeervierrieeriieeiieenieeieeseeesieeseeesveesneevens 12

4.4, LOZEING SYSTOIML. ...uuteiiiiirietieirtteeeeiiteeeearteeeeesrteeeesassteessasraeesesssstessssssneessssssseesssnsseessssnsneessns 13
4.4.1. Log Level Configuration..........cceccueerieeieesienieeitienieesieesseesseeseessseesssesseesseesssessssesseens 13
4.4.2. Email Logging Configuration...........cceecueirieriiernienieiienieestesieesitesieesieesaessseeseeesaeeens 13

4.5. MDN CONfIGUIAtION. ...eeitiierieeiieiieeitienteesteesteesteesteesteessseesseessaeesseesssessseesssessssssssessseessassssees 14
4.5.1. Asynchronous MDN Receiver Configuration...........cccccecueeeerueeneneenennieneenenseeneeneeennes 14
4.5.2. Asynchronous MDN Sender Configuration............ccccueevueerieenieeieeniieeneenresseeeseeeveennnes 14

4.6. Configuring HTTPS TTanSPOIT.......cccterrieeruierierritenieerieestessteesseesseesstessessseessseesseesssesssaesssens 15
4.6.1. INDOUNA TTANSTEIS. ..c..eeruiiiieieeiteieete ettt sttt sttt e e s e b st e s e sae e 15
4.6.2. Outbound TTaNSTEIS. ...c..eevuiiiieieriieieiterteeet ettt sttt sre st saeesaeeaees 15

4.7. Message State TTaCKiNE.......ccueievueiriiiieiieieiieeeitteesieeesteeeseeeesireeeseaeessaaeesaaeessaeessssesssseesnsnes 15

5. RUNNING OPEIASZ......oeiiiiieeeeetee ettt ettt ettt e e sttt e s ab et e e essbeeesesraeeesesnrteesesnsreeesennsnaeessnnne 16
5.1, Starting OPENASZ....ccuuueiieieiieeeeteeeerrttee e st e e e setteeessaraeessssaeessssssaeeesssssaeessssssaesssssseeesssnns 16
5.2. ComMMANA ENITY..coutiiiiiiiiiniieiteieeie ettt sttt st et e st e e st e s bt e saeesbesssaessseesseesssessaesnsaens 18
5.3. Automated Launching As UNIX DaemOm.........ccceeeruerriiieeniieeiniieeenieeenieeeseeessseessseeessseesnnnes 19
5.3.1. INIT.D SEIVICE...c.uteotiriiriiiienieniteteetesie et eite st este st st st e sat e bt ebesseessesasesaeessesasesaeesesanens 19
5.3.2. SYSTEMD SEIVICE.......uiiiiiiiiiiiiiiieiiteeie ettt ettt e bt e s esre e s bte e srae e s neeeeanee s 20

6. Testing OPENAS2 TTANSTETS. ...cc.uieuiiriiiitierieeitert ettt ettt ettt saa e e sbe et eebeessaesbaesaaessseeaee 20
6.1. USING HTTPS TTanSPOTL.....ccceivtteerriieeeieiiteeteniiiteeessiteeesssseeesessreeeessssseeesssssseesssssseessssssseessns 20

7. Troubleshooting OPENAS2........ooiiiiiieieeeeete ettt et s et e st e e sae e sbe e st e s beesaeesabaessaesssesnses 21

7.1. Canonicalization For MIC AIGOTithMm.......cccceiiiiiiiiiniiiiienieeeeet et 21

7.2. BINAry ENCOGING......ccooiiiiiiiiiiiieiniieenieeesie ettt stt e s site e steessateessaaeessaeesssaessssesssseeensseesnns 21
7.3. HTTP Restricted HEAAETS......cccueeuiiriiriiniiiiieieeitenieeieet ettt ettt et st 22
7.4. CMS AlgOrithm PrOteCiON.cccveiieiiiiiiieeieeett et et eesseeesreeesteeesaeeesiaeeesaaeesssaeesssessnnnes 22
7.5. SSL Certificate EXCOPLIONS.cccutiriieiriieeieerite ettt ettt e ittt e e bt e st s beesateebeessaesbeesatesseenns 22
7.6. Java Versions PriOr TO 1.6.....cccc.ciiiiiiiiiiiiiieeee ettt 23
7.7. Mime Body Part LOZGING.......cc.coiuiiiiiiiiieieeiteeiteite ettt et sae ettt st e s ae e st e s aeesaseeneees 23
7.8 TLSVL. 21ttt ettt ettt et s bt et et e s ae et e e a e e s bt et e e st e nae et e eatenaeeaesaeens 24
8. Partner AS2 Compatibility SEttiNGS.......c.cevieriiiiriiniiieiieeie ettt ettt st 24
9. ReMOLE COMITOL.....coueiiiiiiiieiieeee ettt ettt s e sb e st e e st e s e e bee st e e st e sanesneesnneeaneenns 24
10. DyNamic Vari@bles..........cooiiiuiiriiiitieieete sttt ettt ettt s sae e st e bt e st e s ba e st e e beesaneenns 25
11. Appendix: config.Xml file SIIUCIUTE...........cccuiirieriiierieeieerteee ettt et steesaeeseeesbeeseaeebaesaeaas 26
12. Appendix: partnership.Xml file StrUCTUTE.........cccceviriiiriiririintieeeeceeee et 34
13. Appendix: command.Xml file StrUCIUTE.........cccveriieriiiiieiieereeee ettt ereesaeeeaeesaaeeaeees 36

1. Introduction

The OpenAS?2 application enables you to transmit and receive AS2 messages with EDI-X12,
EDIFACT, XML, or binary payloads between trading partners. The AS2 implementation conforms
with REC4130.

This document describes how to install, configure and use OpenAS2. In this document a partner can
be either your own company or a company you will be exchanging data with using AS2.

The sample configurations in this document are based on Unix type OS but in general the only
significant difference is that it may be necessary to use “\” instead of “/”” for folder name separators
on Windows based machines but because the application is Java it should work fine leaving the “/”
for the most part as Java will do the conversion if necessary.

This document is valid for version 2.2.0 and up.

2. Glossary
EDI — Electronic Data Interchange

MDN - Message Disposition Notification

3. Installing OpenAS?2

3.1. System Requirements
To be able to run the OpenAS2, you will need:

1. Java™ installed on the machine you intend to run the OpenAS2 server on — this document
uses Java 1.6.

2. The OpenAS2 package version you wish to use. The downloadable packages can be found
here: https://sourceforge.net/projects/openas2/files

3. Java Cryptography Extension (JCE) policy files - you can download the correct version

https://sourceforge.net/projects/openas2/files
http://www.ietf.org/rfc/rfc4130.txt

from the Java website. Search “Java Cryptography Extension Unlimited Strength“ to find

the right cryptography extension for your version of Java. The current link for Java8 is here.

3.2. Installing Application

The following steps will provide an installed app on a target machine:

1. Unzip the downloaded OpenAS2 package into a suitable location, which we will call

<install dir>.
NOTE: Typical values for <install dir> locations are /opt/0penAS2 under Linux®/Unix or C: \OpenAS2 under Microsoft®

Windows®.

2. For the encryption and certificate management to work correctly, you must have the proper

JCE policy files installed in your version of Java (see system requirements above). The
downloaded zip archive contains the two files 1ocal_policy.jar and
US_export_policy. jar. Install them into your Java location under
<JAVA_HOME>/1ib/security. Back up the existing files before installing these new
ones. There are numerous detailed articles on the web for installing these files if you need
more information.
The file structure will look something like the figure below without the data and logs folders which
are created automatically by the server when it starts based on configuration if they do not exist.

Name

v

bin

m commons-logging.properties
gen_p12_key_par.sh

B start-openas2.bat
start-openas2.sh

build.xml

| config

vvvy vy vvwvvw]

as2_certs.p12
commands.xml|
canfig.xml
emailtemplate.txt
partnarships.xml

] data

| OpenAS2A_OQID-OpenAS2E_QID
| OpenASZEB_OID-OpenAS2A_QID
| resend

| temp

| toAny

| toOpenAS2A

|| toOpenAS2B

B lib
l logs

Y log-08042015.txt
" log-D8052015.txt
| log-DB062015.txt
manifest.mf

| 8IC

3.3. Tuning Java

The default settings for the Java virtual machine in the startup script (start_openas2.sh or

~

Date Modified

Today 13:52

3 August 2015 23:38
27 July 2015 19:07
Today 00:06

2 August 2015 22:55
4 August 2015 17:52
4 August 2015 22:53
27 July 2015 19:17
16 August 2010 08:58
3 August 2015 23:21
16 August 2010 09:58
3 August 2015 22:41

Yesterday 23:38
Yesterday 23:38

4 August 2015 22:56
4 August 2015 22:55
Yesterday 23:38

4 August 2015 22:55
Yesterday 23:37
Yesterday 23:38

4 August 2015 22:53
Today 00:05

4 August 2015 22:56
Yesterday 23:38
Today 14:03

1 August 2015 08:46
1 August 2015 22:34

Size

66 bytes

2 KB

3 KB

999 bytes
3 KB

5 KB

1 KB

4 KB

166 bytes
2 KB

3 KB

5 KB

216 bytes
68 bytes

Kind
Folder
Java p...iles
shell script
MacVi...umg
shell script
XML text
Folder
person...S5#
XML text
XML text
text
XML text
Folder
Folder
Folder
Folder
Folder
Folder
Folder
Folder
older
Folder
text
text
text
Unix E...le H
Folder

start_openas2.bat) will work for installations on most machines for low volume/small file size

transfers. However, if your system will be transferring large files you will need to increase memory

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

allocation. If you expect to support very high AS2 traffic you will need to increase memory
allocation and possibly tune the garbage collector to get reasonable performance.

How much you can increase memory allocation to Java will depend on how much RAM is installed
on the system running OpenAS2 and how many other processes will be running concurrently that
will also require memory. Most systems deploy with at least 8GB RAM these days so increasing
memory allocation from the default amount in the startup script should not cause adverse affects to
the system.

To increase memory allocation you need to increase the heap space. This is set using the -Xmx
option. You could increase this from the 384m (m = MB) default setting to 1g or 2g to get good
performance for large files or busy systems and for very large files given enough RAM you can set
it to 6g or 8g. Search for “-Xmx” in the startup script and adjust accordingly.

For garbage collection you may want to allocate a more appropriate garbage collector than the
default parallel collector that is the default in Java. In Java 7 and up, the G1 collector is ideal if you
use large heap space allocation. To enable it add this to the command line parameter:

—XX:+UseG1GC

4. Configuration

This section explains the details of the configuration files and how they link together.
The OpenAS2 server uses four files to configure and execute:

1. config.xml — configures the application

2. partnerships.xml — configures the partners

3. as2_certs.p12 — stores the PKCS12 certificates for all partners

4. commands.xml — stores the commands that the application will support. This file should not
be modified

IMPORTANT: A restart of the application is required to load any configuration changes.

The folder containing the config.xml file defines the home configuration parameter that can be used
to reference other files on the file system relative to a known base folder in the app. This is done by
encapsulating home in percentage signs (%shome%). All files can be referenced relative to this
parameter and it is how the default config.xml file defines the location of other configuration and
data file locations used by the OpenAS2 application.

4.1. Application Configuration

The file named “config.xml” configures the modules that will be activated by the AS2 server when
it starts up. This file can be located anywhere within the disk subsystem on which the OpenAS2
application runs as it is passed into the application as a startup parameter.

Some of the key configuration settings in the config.xml file are:

* define the modules to be activated in the OpenAS2 application
* override module default classes in the AS2 code base
* enhance or change behaviour of modules and the inputs and outputs of the modules.
* define the location of the certificates keystore and password
* define the location of the partnerships configuration file
* specify the listening ports
See appendices for a detailed definition of the config.xml file structure.

There are 2 listening ports for inbound connections (see partnerships.xml config for outbound
connections) used for:

1. receiving messages and synchronous MDN's — default port number 10080
2. receiving asynchronous MDN's - default port number 10081

The port numbers are arbitrary and defaulted to a number above 1024 that does not require root
access to listen on (normally on Unix type systems any port below 1024 requires root access). The
port values are important to the partner you will be communicating with if they will be sending AS2
messages to your system. For outbound only systems, it is only necessary to have a listener for
asynchronous MDN's if using that mechanism for MDN's.

Each module has a number of attributes that can be configured on the module element to control
and change how the module behaves.
4.1.1. Overriding Certificate Store Password

The certificate store password is stored as an XML attribute “password” on the <certificates>
element. This can be overridden using the system property “org.openas2.cert.Password”. For
improved security, it may not be desired to store the password in the XML file.

This can be passsed into the application by adding the following to the java command:
* -Dorg.openas2.cert.Password=myCertificateStorePassword

This can be set by using an additional parameter to the batch script file so that it can be set as part of
invoking the script. The UNIX shell script will support the password as a parameter. The Windows
bat file will need to be enhanced.

4.1.2. Resend Retry Configuration

When failures occur transferring a message to a trading partner, the system will automatically try to
resend the message. By default the system will retry indefinitely.

Restricting the retry attempts can be done at the processor level (applies to all partnerships
configured on the server) and at the partnership level. Partnership configuration will override
processor settings.

To define the processor level retry count, set the “resend_max_retries” attribute on the processor
element to a valid integer.

Example snippet:
<processor classname="org.openas2.processor.DefaultProcessor"
pendingMDN="%home%/../data/pendingMDN3"
pendingMDNinfo="%home%/../data/pendinginfoMDN3"
resend_max_retries="10" >

To define the partnership level retry count, set an attribute element on the partnership with name
attribute value as “resend_max_retries” and a value attribute element to a valid integer.

Example snippet:
<partnership name="OpenAS2A-to-OpenAS2B">
<attribute name="resend_max_retries" value="3"/>

<sender name="0OpenAS2A"/>

4.2. Partner Configuration

The file named partnerships.xml configures all the information relating to the partners you will be
exchanging data with. See the appendix for information on the structure of this file.

It is important to keep in mind that the word partner refers to any entity specified as a recipient or
sender of AS2 messages and includes your own company that you might be configuring the
application for.

Each partner will require the following entries in the file:
* a<partner> element — key information defining the partner

* a<partnership> element - key information for defining a partnership between 2 partners
Separate <partnership> elements are required for inbound and outbound data for a specific
partner pairing.

NOTE:It is necessary to have 2 elements even if data transfer is unidirectional.

4.2.1. Partner Definition

The <partner> element requires 3 attributes to enable AS2 partner identification:
1. partner name — this is the key to connect partnerships to a partner definition

2. AS2 identifier — this is the key for identifying the target/source partner and is included in
AS?2 message headers to allow the receiving partner to identify the source of the message
and verify the target partner for the AS2 message. It is also used by the general directory
polling module to look up the partner names and hence the partnership definition where the
as?_id of the sender and receiver are part of the transferred file name.

3. X.509 certificate alias — identifies the alis of the certificates for this partner in the keystore.
The encryption and decryption of messages requires the partners public or private key as
appropriate

4.2.2. Partnership Definition

The <partnership> element identifies a specific direction of AS2 message transfer from one partner
to another. The “name” attribute on the <partnership> element is not important but should be used
to clearly identify the intended use of the partnership definition. It is suggested the name value uses
the names of the source and destination partners something like xxx-to-yyy.

The <partnership> element encapsulates a number of child elements that are necessary to properly
configure a partnership:

* <sender name="xxx"> - identifies the sending partner definition such that xxx must match

the “name” attribute of a <partner> element

5

* <receiver name="yyy”> - identifies the receiving partner definition such that yyy must match

the “name” attribute of a <partner> element

* <as2_url> - a fully qualified URI that provides the connection string to the remote partner
for sending AS2 messages. If sending to another OpenAS2 server then the port number must
match the value configured in the config.xml file of the remote OpenAS2 server.

* <as2_mdn_to> - neccesary if an MDN response is required and can be any random string
but is most commonly configured with an email address

4.2.3. Transfer Encoding

As of version 1.3.7, the default content transfer encoding uses “binary” if not explicitly overwritten
in the configuration. The default can be changed using the “content_transfer_encoding” attribute
in the partnership.xml file. If you experience issues with failing to verify a partners AS2 inbound
message because the message contains CR/LF data in it then you should switch to using “binary”
for the transfer encoding. The sample partnership file sets the transfer encoding to “binary” for both
partners.

4.2.4. Supported Encoding Algorithms

The currently supported encoding algorithms are:

e MD5

e SHAI1

* SHAZ224

* SHA256

* SHA384

* SHAb512

* CAST5

* 3DES
 IDEA

« RC2_CBC

* AES128 (CBC mode)
* AES192 (CBC mode)

* AES256 (CBC mode)
* AES256_WRAP

4.2.5. Message Compression

The application supports inbound compression automatically. There is no configuration for this
option. To enable outbound compression requires setting “compression_type” attribute on the
partnership definition for the outbound configuration. The only supported
compression/decompression at this time is “ZLIB”. The default is no compression of sent messages.

By default compression will occur on the message body part prior to signing. The compression can
be configured to occur after signing using the “compression_mode” attribute on the partnership
definition for the outbound configuration. Set the attribute to “compress-after-signing” to enable
this.

See partnership.xml appendix for configuration details.

4.2.6. Custom Mime Headers

Mime headers can be added to the outermost Mime body part for outbound messages and
additionally added to the HTPP headers. The outermost Mime body part will depend on
configuration of the partnership and could be the compressed, signed or encrypted part. In the case
of the encrypted part being the outermost mime body part, the HTTP headers will not be visible
until after decryption of the body part since encryption protects the content and the headers.

4.2.6.1. Static Header Values

Custom headers can be added as statically defined name/value pairs in a partnership
attribute where the name and the value are separated by a colon. Multiple static headers are
added using a semi-colon separated list between each name/value pair. The attribute name
for this is “custom_mime_headers” and a sample entry of 2 static headers is shown below:

<attribute name="custom_mime_headers" value="X-CustomRoute: X1Z34Y ; X-CustomShape:oblong"/>
Note that spaces before or after the “;” and “:” separators will be excluded.

4.2.6.2. Dynamic Header Values From File Name
Dynamic headers require 2 attributes to configure their behaviour and there are 2 different
modes of operation for extracting the value(s) for the defined header(s) from the file name:
1. delimiter mode

2. regular expression mode

Delimiter mode is relatively simple and does not require any special knowledge but regular
expression mode may require someone with regular expression skills. Regular expression
mode provides far greater flexibility for extracting the value(s) from a file name where
specific character sequences or character counts are required.

Both modes use an attribute named “custom_mime_header names_from_filename” to
enter the list of header names but the format for the two are slightly different. The second
attribute required has a different name for each of the modes,

“custom_mime_header_name_delimiters_in_filename” for delimiter mode and
“custom_mime_header_names_regex_on_filename” for regular expression mode.

IMPORTANT: if both delimiter mode and regular expression mode attributes are entered
into a partnership then delimiter mode will be chosen irrespective.

Delimiter Mode
In delimiter mode, the values in the file name are separated by specifiying one or more
delimiters and the entire file name is parsed into a list of values using the delimiter(s)
defined. In order to accommodate file names that have more than just the values required for
the custom headers, the list of header names are defined with a prefix that designates if the
value in the list will be used as a header value or not. For an entry to be added as a header it
must have the prefix “header.”. Any other prefix will cause that entry to be ignored. There
must be as many header names defined as there are string sequences that would result from
splitting the file name string by the delimiter(s) otherwise the system will throw an error.

Below is an example of a delimiter based configuration.

<attribute name="custom_mime_header_names_from_filename"
value="header.X-Headerl, header.Y-Header2, junk.extraStuff"/>

<attribute name="custom_mime_header_name_delimiters_in_filename" value="-_"/>
Using this configuration, given a file name ABC-123-INVOICES.csv there would be 2
headers added as:

X-Headerl value ABC

Y-Header2 value 123

If the file name was ABC-123-H4FT_INVOICES.csv the system would throw an error as
there would be 4 string sequences extracted so you could fix this by appending
junk.moreStuff to the “custom_mime_headers_from_filename” attribute.

Another example of delimiter mode in the partnership:
<attribute name="custom_mime_header_names_from_filename"
value="header.X-Headerl, other.stringl,header.Y-Header2"/>

<attribute name="custom_mime_header_name_delimiters_in_filename" value="-"/>
Using this configuration, given a file name ABC-123_TEST-INVOICES.csv there would
be 2 headers added as:

X-Headerl value ABC
Y-Header2 value INVOICES

Regular Expression Mode

Regular expression based mode uses Java regular expressions and requires that the regular
expression is constructed in grouping mode where the number of groups in the regular
expression exactly matches the number of header names in the
“custom_mime_header_names_from_filename” attribute. The regular expression will be
used to parse the file name to extract the values for the defined names in the attribute named
“custom_mime_header_names_regex_on_filename”. Regular expressions can become
extremely complex and this document will show some simple examples but there are many
sites that provide regular expression tutorials if you need a complicated soultion.

An example for a regular expression mode configuration is shown below:
<attribute name="custom_mime_header_names_from_filename" value="X-Headerl, Y-Header2"/>
<attribute name="custom_mime_header_names_regex_on_filename" value="([A-]*)-([A.]*).csv"/>

Using this configuration, given a file name ABC-123-INVOICES.csv there would be 2
headers added as:

X-Headerl value ABC

Y-Header2 value 123-INVOICES

If the file name was ABC-123-H4FT_INVOICES.csv there would be 2 headers added as:
X-Headerl value ABC

Y-Header?2 wvalue 123—HFT INVOICES

If the file name was ABC-123-H4FT_INVOICES.txt or ABC_123.csvV the system would
throw an error since there would be no match.

Another example for a regular expression mode configuration is shown below:
<attribute name="custom_mime_header_names_from_filename" value="X-Headerl,Y-Header2"/>
<attribute name="custom_mime_header_names_regex_on_filename" value="([A-]*)-([A.]*).csv"/>

Using this configuration, given a file name ABC-123-INVOICES.csv there would be 2
headers added as:

X-Headerl value ABC

Y-Header2 wvalue 123-INVOICES

4.2.6.3. Adding Custom Headers To HTTP

The following attribute set to value of “true” will additionally add the headers to the HTTP
headers for both static and dynamic header mechanisms:

<attribute name="add_custom_mime_headers_to_http" value="true"/>

4.2.7. Setting Dynamic Attributes From File Name

Partnership attributes can be added to the partnership definition based on parsing the file name of
the document to be sent using a regular expression. Dynamic attributes require 2 partnership
attributes to configure their behaviour for extracting the value(s) for the defined attribute(s) from
the file name.

1. “attribute_names_from_filename” - when added to a partnership it must contain a list of
comma separated attribute names

2. “attribute_names_regex_on_filename” - defines the regular expression

The extracted name/value pairs can then be referenced in config using the format:
$attributes.<attribute name>$

Regular expressions uses Java regular expressions and requires that the regular expression is
constructed in grouping mode where the number of groups in the regular expression exactly
matches the number of attribute names in the “attribute_names_from_filename” attribute.
Regular expressions can become extremely complex and this document will show some simple
examples but there are many sites that provide regular expression tutorials if you need a
complicated solution.

An example for a regular expression mode configuration is shown below:
<attribute name="attribute_names_from_filename" value="X-attributel,Y-attributel"/>
<attribute name="attribute_names_regex_on_filename" value="([A-]*)-([A.]J*).csv"/>

Using this configuration, given a file name ABC-123-INVOICES.csv there would be 2 attributes
added as:

X-attributel value ABC

Y-attribute2 value 123-INVOICES

If the file name was ABC-123-H4FT_INVOICES.csv there would be 2 attributes added as:
X-attributel wvalue ABC
Y-attribute?2 value 123—HFT INVOICES

If the file name was ABC-123-H4FT_INVOICES.txt or ABC_123.csv the system would throw
an error since there would be no match.

Another example for a regular expression mode configuration is shown below:
<attribute name="attribute_names_from_filename" value="X-attributel,Y-attributel"/>
<attribute name="attribute_names_regex_on_filename" value="([A-J*)-([A.]*).csv"/>

Using this configuration, given a file name ABC-123-INVOICES.csv there would be 2 attributes
added as:

X-attributel value ABC

Y-attribute2 value 123-INVOICES

The above attributes could be referenced in config to set a more dynamic subject using something
like this:

<attribute name="subject" value="Target product: $attributes.X-attributel$ Sequence Count:
S$attributes.Y-attribute$"/>

This would produce a subject looking like this:
Target product: ABC Sequence Count: 123-INVOICES

4.3. Certificate Configuration

NOTE: SHAL1 certificates are no longer supported and are rapidly being phased out so you should
use SHA256 for all partners that do support SHA256 certificates.

4.3.1. Creating And Importing

The certificate store used by default is a PKCS12 key store and stores all X.509 certificates for all
trading partners. The location and name of the certificate keystore is defined in “filename” attribute
of the “certificates” element in the config.xml file. The default deployment uses the file
<installDir>/config/as2_certs.p12

The key store must contain the private key of your own X.509 certificate and the public key for
each of your trading partners X.509 certificates.

The certificates must be stored with the matching alias as specified in the partner definition of each
partner in the partnership.xml file.

There is a shell file to help generating certificates: bin/gen_p12_key_par.sh
An excellent open source visual keystore manager that will run on any OS and will allow importing
and managing certificates in your keystore can be found here: http://portecle.sourceforge.net/

The following steps will create an X509 self signed certificate using OpenSSL:
openssl req -x509 -newkey rsa:4096 -keyout priv.key -out selfcert.crt -days 3650 -sha256

The generated certificate (selfcert.crt in the above command) can then be imported into the
PKCS12 keystore using a command like this in the OpenAS2 command mode that is the default
when starting openas2 from the command line or via the OpenAS2 remote app:

cert import <alias> <path+filename>

To create the public key for sending to the partner you can use this:
openssl x509 -pubkey -noout -in selfcert.crt > pubkey.cer

The file containing the public key will be pubkey.cer

If you wish to import the public and private key then you create the PKCS12 key store from the

http://portecle.sourceforge.net/

certificates:
openssl pkcs12 -export -in selfcert.crt -inkey priv.key -out certs.p12 -name my_new_partner_alias

The PKCS12 keystore now contains both public and private keys and can be imported into the
keystore via the command interface or simply by replacing the existing keystore with the new one
and setting the appropriate attributes in the config.xml file. It is important to use the ".p12"
extension when importing certificates from a PKCS12 keystore as the importer requires the “.p12”
extension to detect that you are not importing a certificate directly but rather the certificates in a
PKCS12 keystore.

The OpenAS2 command processor (or remote OpenAS2 app) import command for a PKCS12
keystore would be in this format:

cert import <alias> <path+filename> <keystore password>

4.3.2. Supporting Multiple Private Certificates

In the case where you need to support multiple certificates such as when one partner needs SHA1
and another needs SHA256 or when you want to set up different certificates per partner, follow
these steps below.

The key to supporting multiple certificates is ensuring you use a separate as2_id and x509_alias
attribute.

In the partnership.xml you would add another partner element pointing to a different certificate.

If for example you have a <partner> element definition for your company as below:

<partner name="MyCompany" as2_id="MyCompany OID" x509_ alias="MyCompanyCert"
email="me@MyCompany.com"/>

For each additional certificate you support, you then add another <partner> element. If for instance
you have SHA1 already deployed and working with existing partners and you create a SHA256
certificate to support a new partner, you add a new <partner> element something like this:

<partner name="MyCompany256" as2_id="MyCompany2_ OID"
x509_alias="MyCompanyCert256" email="me@MyCompany.com"/>

In your partnership definition for the partners using the SHA256 certificate you set the "sender" and
"receiver" attribute as appropriate to point to the correct partner definition (" MyCompany256" per
the example above) along with changing the SHA1 to SHA256 in the other relevant attributes as
shown in the snippet below.
<partnership name="MyCompany256-to-MyPartner256">
<sender name="MyCompany256"/>

<receiver name="MyPartner256"/>
<attribute name="protocol" value="as2"/>

</partnership>

Import the new certificate into the existing p12 keystore using the alias as defined in the x509_alias
attribute above ("MyCompany2Cert256") and send the partner the matching public key for the
new certificate along with the as2_id "MyCompany256_OID" that they will need to use so you can

differentiate your target definition in the partnership file containing the SHA1 certificate from the
SHAZ256 certificate. See the previous section for importing certificates into your existing keystore.

4.4. Logging System

Logging supports 6 levels that can be controlled by configuration. The logging output can be
directed to to multiple destinations including:

* System console

* Local log files

* Email — log messages are emailed to a configured email address.

* Socket — log messages are writeen to a socket supporting remote logging

All log classes can be overridden or custom logger classes can be coded and included via
confioguration

4.4.1. Log Level Configuration

The logging system supports the use of either or both the commons-logging.properties file or a file
named openas2log.properties to control the logging level. Properties in openas2log.properties will
override commons-logging.properties entries. There is a commons-logging.properties file in the bin
directory which is part of the classpath specified in the script file described in the section on
running the application.

The properties in the openas2log.properties file should be prefixed by
“org.openas2.logging.”

The following are the logging levels supported by the application in order of lowest(finest) to
highest:

"TRACE", "DEBUG", "INFO", "WARN", "ERROR", "FATAL"

The logging levels are turned off by specifying the level you want on and all other levels higher
than that level will also be turned on.

The default level is INFO and therefore WARN, ERROR and FATAL are also turned on by default.
By adding a property level=DEBUG in the common-logging.properties file will result in DEBUG
logging being enabled along with INFO, WARN, ERROR and FATAL

The same can be achieved by adding org.openas2.logging.openas2log.level=DEBUG in the
openas2log.properties file.

4.4.2. Email Logging Configuration

The email logger uses the javax mail API to send ERROR level log messages. Some of the basic
email configuration parameters are supported via config in the config.properties file as indicated in
the appendix. The rest of the mail properties as listed in the Javamail API can be set by passing
them as system properties on the command line by modifying the start-openas2.sh or start-
openas2.bat file as appropriate or using the javax.mail.properties.file attribute on the email logger
element.

The configuration values can overwrite each other depending on the source of the configurtion
value. The order of priority is as follows:

1. wvalues set in the logger element attributes

2. entries in the file identified by javax.mail.properties.file

3. entries using system properties

For example, to pass the port for connection you could add this to the command line:
-Dmail.smtp.port=529

To point to a properties file containing all the relevant information you would add something like
this:
<logger classname="org.openasZ.logging.Emaillogger"
javax.mail.properties.file="%home% /java.mail.properties"”
from="openasz2"”

4.5. MDN Configuration

MDN's can be sent synchronously or asynchronously. By default the system will use synchronous
MDN mechanism. Per the AS2 specification, an MDN will only be sent on receipt of an AS2
message if the “Disposition-Notification-To“ header is present in the received message with a non-
empty value. Although this value is specified to be configured with an email address, it is not
utilized for any purpose in the AS2 protocol other than to indicate an MDN is required so can in fact
be any random string. To set the “Disposition-Notification-To“ header in an outbound message,
the “as2_mdn_te” attribute must be set on the partnership.

The other attribute that must be set is the “as2_mdn_options”. This defines the encryption
algorithm and other MDN settings as specified by the AS2 protocol and the value entered for this
attribute will be sent in the “Disposition-Notification-Options” header of the AS2 message.
Generally changing the encryption algorithm to suit the trading partner should be sufficient on this
attribute.

4.5.1. Asynchronous MDN Receiver Configuration

In order to specify an asynchronous MDN response from a partner requires setting the following
attribute on the partnership element in the partnership configuration:

* as2_receipt_option — set to the URL of the asynchronous MDN receiver to target the
asynchronous MDN receiver module configured in the config file (ie. this is the URL that
the partner will send the MDN to). The value set in this attribute will be sent in the
“Receipt-Delivery-Option” header of the AS2 message to the trading partner. For testing
using the default config file that comes with the OpenAS?2 installation package, set this to:
http://localhost:10081

Receiving an asynchronous MDN requires the “AS2ZMDNReceiverModule” module. This module
declaration requires a port parameter in addition to the class and can be entered as a child member
of the processor node in the config file as shown below:

<module classname="org.openas2.processor.receiver. AS2MDNReceiverModule" port="10081" />

4.5.2. Asynchronous MDN Sender Configuration

Sending an asynchronous MDN requires the “AsynchMDNSenderModule” module. This module
declaration does not require any parameters other than the class and can be entered as shown below

http://localhost:10081/

as a child member of the processor node in the config file:

<module classname="org.openas2.processor.sender.AsynchMbDNSenderModule" />

4.6. Configuring HTTPS Transport

HTTPS transport using SSL is configured separately for inbound and outbound connectivity.

4.6.1. Inbound Transfers

Configuration for inbound is in the config.xml file. The requirements for receiving AS2 files using
HTTPS are:

* JKS keystore containing the SSL certificate
* an appropriately configured As2ReceiverModule module element
The key attributes that configure HTTPS are:

* protocol="https"
* ssl_keystore="%home%/ssl_certs. jks" —points to the JKS certificate keystore
* ssl_keystore_password="<passwordforkeystorefile"
* ssl_protocol="TLS"
See the appendix for details on the attributes.

4.6.2. Outbound Transfers

The partnership definition for the connection URL will also have to be set to the appropriate host
name.

The key attributes that configure HTTPS are:

e asZ_url
e« as2_mdn_to (only if MDN 1is required)

If asynchronous MDN is in use and requires HTTPS then a As2MDNReceiverModule module
needs to be configured in the same way as for the As2ReceiverModule class above.

If the target system being connected to uses self signed certificates, the following system property
will have to be passed to the application in the java command line with a comma separated list (no
spaces before or after comma) of the “Common Name” (CN) in the self signed certificate that will
be returned by the target system:

-Dorg.openas2.cert.TrustSelfSignedCN=<Common.Namel>, <Common.Name2>,..

4.7. Message State Tracking

As of version 2.1.0 the system will track key events in the message transmission and reception
process and write them to an embedded H2 database. The database default location is:

<install _dir>/config/DB
The database can be accessed by a JDBC client whilst the OpenAS2 app is running using the
parameters shown in the table below.

Item Default Value

Database name openas?2

Item Default Value
Database user name sa
Database password OpenAS?2
JDBC connect string jdbc:h2:

There is a file named db_ddl.sql file located in the config folder that can be used to create the
necessary table structure if your DB becomes corrupted. The simplest way to recreate the database
table is using this command whilst OpenAS2 is running:

java -cp [path to OpenAS2 install]/lib/h2-1.4.192.jar org.h2.tools.RunScript -user sa -password
OpenAS2 -url jdbc:h2:tcp://localhost:9092/openas2 -script [path to OpenAS2
install]/config/db_ddl.sql

The above is for the version of H2 deployed with OpenAS2 version 2.1.0. If you use a different
version of H2 then change the jar name to reflect this.

5. Running OpenAS2

OpenAS?2 can be started from the command line in any operating system that supports Java or can
be configured to run as a daemon using the appropriate mechanisms for the operating system.

The default deployment for OpenAS2 has a console logger enabled which means that all logging
will be visible in the command line window that OpenAS2 is started from. The server can also be
configured from the command line once the application is running by simply typing in commands
once it has started. Because the logging will appear in the window it may make command entry
difficult if there are active transfers at the time you try to enter commands and it may be desirable to
switch off the console logger if you have no need for it.

5.1. Starting OpenAS2

The default install of the application is as in the figure below from a windows PC.

« v » ThisPC » Downloads » OpenAS2Server-1.1.0 » hin v D

.

Movies ~ [mame Date modified Type Size
J’ Music | | commons-logging.properties PROPERTIES File 1KB
NewsSite || gen_p12_key_par.sh SH File IKB
- Windows i 3Kl
& OneDrive 1] start-openas2.bat indows Batch File KB
|| start-openas2.sh yp® Windows Batch File File TKB

~ [This PC i)l 75 KB
Dat ified: 06/08/2015 00:06
[Desktop ¥

|=| Documents
v ; Downloads
DeviDE
HP Downloads

Windows batch file

Unix Shell Script

Littleships

v OpenAS2Server-1.1.0
bin
config

data

lib
logs é'/

SIC

} Additional folders created when OpenASz2 is
run with default config

n a1 o

4 items

There are 2 executable script files in the bin folder of the AS2 application root as indicated in the
screenshot above:

1. start-openas2.sh — for UNIX based systems
2. start-openas2.bat — for Microsoft Windows based system

It is not necessary to modify these files for the default install to work. If you choose to put the
config.xml file in a different location than the default then you will need to edit the appropriate
script file and set the path to the config.xml file appropriately.

Simply execute the script file and an AS2 server will start up. It will create the following folders
along with sub folders when it starts assuming no change to the default config:

* logs — contains the norml program logging

* data — contains all the transferred files and any AS2 specific headers associated with AS2
transfers. This folder will have a number of sub folders for outbound and inbound files for
different partners

In Microsoft Windows you should be able to double click the start-openas2.bat file and a command
window will open as below.

Se

Bl CVWINDOWS\system32\emd.exe - O x

For Unix based systems such as Linux and OSX, open a terminal window and change directory to
the “bin” folder of the install. The start_openas2.sh file should have execute permissions in which
case simply type the name and press enter. If no execute permissions are set, either set the execute
permission as needed or use “sh” to run the script:

/opt/OpenAS2:>sh opensas2.sh

The output in a Unix based system will be identical to that in a Windows based system.

5.2. Command Entry

After startup of the OpenAS2 application, no command prompt is shown in the command line
window initially but you can enter a command or just press <ENTER> to get a visible prompt.
Typing ? Will show possible commands. Each command will list sub commands they require if you
try to enter them without the appropriate parameters.

A screenshot showing command entry is shown below.

Command Entry

BN CAWINDOWS\system32icmd,exe - O *

5.3. Automated Launching As UNIX Daemon

Although the application will launch as a daemon without any change to the default config, it is
recommended that the following configuration changes are made to reduce unnecessary processing
by modules that are redundant in this mode and filling the system logs with unwanted logging:

1. Remove the console logger — remove the element in the <loggers> element as shown below
<logger classname="org.openas2.logging.ConsoleLogger"/>

2. Remove the stream command processor in the <commandProcessors> element as shown
below
<commandProcessor classname="org.openas2.cmd.processor.StreamCommandProcessor"/>

5.3.1. INIT.D Service

A sample “openas2.d” is provided in the bin directory of the install package. It provides support for
starting and stopping the OpenAS?2 application as a daemon using the init.d mechanism. Use the
appropriate tool for the NIX operating system you are using to install the script in the /etc/init.d
folder and create the soft links to launch the OpenAS2 application when the system starts.

First modify the openas2.d file to reflect the path where you have installed OpenAS2 then follow
one of the options below.

On Redhat based systems as root:

$ cp <srcDir>/bin/openas2.d /etc/init.d/
$ chkconfig --add openas2.d
$ chkconfig --level 2345 openas2.d on

On Debian/Ubuntu based systems as root:

$ cp <srcDir>/bin/openas2.d /etc/init.d/
$ chmod 750 /etc/init.d/openas2.d
$ update-rc openas2.d defaults

5.3.2. SYSTEMD Service

A sample file openas2.service is provided in the bin folder of the install package.

First modify the openas2.d file to reflect the path where you have installed OpenAS2 then follow
the steps below.
$ cp <srcDir>/bin/openas2.service /etc/systemd/system/

$ systemctl daemon-reload
$ systemctl enable openas2.service

Test that it works using the below commands:

$ systemctl enable openas2.service
$ systemctl start openas2.service
$ systemctl stop openas2.service

6. Testing OpenAS2 Transfers

The default configuration of the OpenAS2 configuration is set up for two partners named
“OpenAS2A” and “OpenAS2B”. The system will effectively send messages to itself between the 2
configured partners. You can simply start the OpenAS2 server without any changes and then copy a
file into the appropriate outbox as defined by the relevant module using the
org.openas2.processor.receiver.AS2DirectoryPollingModule classes “outboxdir” attribute to send
the file to the desired partner.

The default configuration provides for 2 partners OPENAS2A and OPENAS2B and will create
outbox folders <installDir>/data/toOpenAS2A and <installDir>/data/toOpenAS2B for explicitly
targeting a partner for any file dropped in one of those folders.

If you wish to run 2 OpenAS2 servers on the same machine then the ports on the 2™ instance of
OpenAS?2 as configured in the config.xml must be different to those configured on the first instance
(see Application Configuration above). If using asynchronous MDN, the URL entry for the attribute
“as2_receipt_option” in the partnerships.xml file for the 2™ instance must match the values
configured in the 1* instances config.xml for hist name and port and vice-versa.

6.1. Using HTTPS Transport

To test on a local machine using the supplied sample self signed SSL certificate
(config/ssl_certs.jks) you should create a localhost DNS entry. The sample certificate was generated

for “www.openas2.localhost”.

This site will help in how to set up a local DNS:

http://www.openas2.localhost/

http://www.selfsignedcertificate.com/development tips.php

The As2ReceiverModule module element should be configured correctly. The key attributes that
will work with the supplied sample certificate are already in the sample config file and should just
be uncommented:

* protocol="https"
* ssl_keystore="%home%/ssl_certs. jks"
* ssl_keystore_password="testas2"
* ssl_protocol="TLS"
The partnership definition for the connection URL will also have to be set to the appropriate host

name and use “https” instead of “http”:

<attribute name="asZ_url” value="https://www.openas2.localhost:10080 "/>
If asynchronous MDN is used then the as2_receipt_option attribute must be configured for SSL as
well:

<attribute name="asZ_receipt_option" value="https://www.openasZ.localhost.com:10081"/>

The following system property will have to be passed to the application in the java command line:

-Dorg.openas2.cert.TrustSelfSignedCN=www.openas2.localhost

If you experience problems with SSL, try adding this to the startup command in the script file:
-Djavax.net.debug=SSL

7. Troubleshooting OpenAS2

This section provides some help in identifying issues with AS2 transfers or configuration and
execution of the OpenAS2 application. Experience has shown that not all systems properly
implement the AS2 specification or have an interpretation of the specification that is different to the
OpenAS2 default implementation. To accommodate these differences, the OpenAS2 application has
some configuration parameters to change the default behaviour on a per partnership basis that may
help to accommodate the implementation anomalies for various other AS2 systems.

7.1. Canonicalization For MIC Algorithm

Some systems (including OpenAS?2 prior to V1.3.7) do not canonicalize the MimeBodyPart as
specified in the RFC when content transfer encoding is not “binary” (the OpenAS2 default is
“binary” but can be set to other values using the “content_transfer_encoding” attribute on the
prtnership). This manifests as errors that cause signature authentication failure that may specifically
mention a mismatched MIC. To cater for this set the following attribute on the partnership:

<attribute name="prevent_canonicalization_for_mic" value="true"/>

7.2. Binary Encoding

If using a content transfer encoding algorithm other than “binary” results in authentication failures,
try setting the attribute on the partnership:

<attribute name="content_transfer_encoding" value="binary"/>

https://www.openas2.localhost:10080/
https://www.openas2.localhost:10080/
https://www.openas2.localhost:10080/
http://www.selfsignedcertificate.com/development_tips.php

7.3. HTTP Restricted Headers

Depending on the version of Java you are running, the HTTP class handling sending AS2 messages
over HTTP that is part of the core Java distribution will automatically remove any restricted HTTP
headers (see here for a discussion: http://stackoverflow.com/questions/11147330/httpurlconnection-

wont-let-me-set-via-header).

This should not be a problem for modern AS2 implementations that OpenAS2 communicates with
but there are reports that some systems respond with an HTTP 400 error code and reject the
message if the “Content-Transfer-Encoding” header that is a restricted header (see section 19.4.5
here: https://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html), is not present in the HTTP
headers (it is present in the mime body part headers of the AS2 message).

To solve this uncomment the line in the startup script file containing this entry

-Dsun.net.http.allowRestrictedHeaders=true

IMPORTANT NOTE: This change cannot be made partner specific due to the
way it is implemented in Java so all configured partners will then
receive restricted HTTP headers so they may fail as a result of this
change. Your only way around this is to run separate OpenASZ2 instances.

7.4. CMS Algorithm Protection

Some AS2 systems do not support REC6211.

The partner system will most likely not provide detailed information that this OID is the issue
unless you request detailed logging from the partner but will manifest as authentication failures of
some sort. Currently known systems that do not support this are IBM Sterling Integrator.

To disable the OID from being sent add this attribute to the partnership (from a security point of
view to include it wherever possible as it plugs a security issue in CMS signed messages):

<attribute name="remove_cms_algorithm_protection_attrib" value="true"/>

7.5. SSL Certificate Exceptions

Sometimes a partner uses a certificate that has intermediate providers not registered in your Java
security keystore. Generally this will be manifested by an exception something like this:

javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX
path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable
to find valid certification path to requested target

at sun.security.ssl.Alerts.getSSLException(Alerts.java:192)

at sun.security.ssl.SSLSocketImpl.fatal(SSLSocketImpl.java:1917)
at sun.security.ssl. Handshaker.fatalSE(Handshaker.java:301)

at sun.security.ssl. Handshaker.fatalSE(Handshaker.java: 295)

at sun.security.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.java:1369)

https://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html
http://stackoverflow.com/questions/11147330/httpurlconnection-wont-let-me-set-via-header
http://stackoverflow.com/questions/11147330/httpurlconnection-wont-let-me-set-via-header

In this case you will need to set up a local trusted certificate provider keystore containing the root or
chained (intermediate) certificates that are missing.

Steps:

1. Run the class embedded in the OpenAS?2 library jar:

java -cp <pathToOpenAS2LibFolder>/openas2-server.jar CheckCertificate <host
name>[:port] <localKeystoreFile> [passphrase]

"<host name>[:port]" should be the same as what you have in the
partnerships "as2_url" attribute EXCLUDING the "https://"

"<localKeystoreFile>" is the name you want to give to your local keystore
(e.g jssechaincerts)

"[passphrase]" is the password for the keystore - it will default to
"changeit" if you do not provide one’

NOTE: If there is no existing keystore you want to add it to then leave out the password
otherwise it will throw an error. You can use the keytool utility that comes with java to
change the keystore password if you wish but since it does not contain any private keys
there is little point in changing the password but if you do then you will have to pass the
new password in to the OpenAS2 app using the javax.net.ssl.trustStorePassword property.

If the class only receives a single certificate as response from the remote host it generally
indicates that the root certificate is not trusted and will need installing into a keystore for use
by the OpenAS?2 application. The output from the class should make it clear it was unable to
successfully complete an SSL handshake and it will import the certificate (root or chain as
necessary) into the keystore.

2. Add the local cert store to the OpenAS2 startup by adding this to the startup command in the

relevant batch file you are using to start OpenAS2:
-Djavax.net.ssl.trustStore=<pathToKeystore>/<localKeystoreFile>

NOTE: If you ran the CheckCertificate mechanism a second time but
point it at the keystore it created the first time round it should
successfuly complete the handshake and there will be no messages
to say it is missing a certifcate.

For example, run it once like this:
java -cp openas2-server.jar CheckCertificate as2.xyz.com:98765 jssechaincerts

Then run it like this:
java -Djavax.net.ssl.trustStore=jssechaincerts -cp openas2-server.jar CheckCertificate
as2.xyz.com:98765 jssechaincerts2

The second instantiation uses the keystore from the first instantiations output and it should not
create a new certificate in keystore "jssechaincerts2"

7.6. Java Versions Prior To 1.6

Prior to java 1.6, the Javabeans Activation Framework is NOT included in the standard Java install.
Download the 1.1.1 version and extract from the zip file from this web page:
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-
plat-419418.html#jaf-1.1.1-fcs-oth-JPR &

The activation.jar must be placed into the “lib” folder of the OpenAS?2 server install and added to

the class path in the shell or batch file as appropriate.

7.7. Mime Body Part Logging

Sometimes it may be necessary to see what is actually in the mime body parts received from a
partner. OpenAS2 provides a mechanism to enable logging of either received message mime body
parts or receieved MDN mime body parts. These are enabled using OpenAS2 startup variables in
the startup script in combination with TRACE level logging. Both the DOS and Unix scripts
provide these variables but are commented out near the top of the batch file and you can simply
uncomment and start the application.

IMPORTANT: this could produce large log files so use sparingly and disable as soon as possible.

The startup variables are:
logRxdMsgMimeBodyParts=true
logRxdMdnMimeBodyParts=true

7.8. TLSv1.2

It appears that although Java7 does support TLSv1.2 it is not enabled by default (refer here:
https://blogs.oracle.com/java-platform-group/entry/diagnosing tls ssl and https)

If you need to use the protocol, add the following to the top of the batch shell script that starts
OpenAS2:

Windows: set EXTRA_ PARMS=%EXTRA_PARMS% -Dhttps.protocols=TLSv1.2
Linux/Unix/OSX: EXTRA_PARMS=$EXTRA_PARMS -Dhttps.protocols=TLSv1.2

8. Partner AS2 Compatibility Settings

The below table provides configuration settings for other AS2 systems that are known to work
based on user feedback.

PLEASE FEEL FREE TO PROVIDE SETTINGS FOR ANY SYSTEMS THAT REQUIRE A
CHANGE FROM THE DEFAULT PROVIDED WITH THE OPENAS2 INSTALL PACKAGE TO
COMMUNICATE WITH OTHER AS2 SYSTEMS.

Where the field is left blank, the setting is unknown and the default that comes with OpenAS2 will
probably work.

https://blogs.oracle.com/java-platform-group/entry/diagnosing_tls_ssl_and_https
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#jaf-1.1.1-fcs-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#jaf-1.1.1-fcs-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#jaf-1.1.1-fcs-oth-JPR

AS2 System Allow Restricted Headers Prevent Canonicalization For Remove CMS
(startup script property: MIC Algorithm Protection
sun.net.http.allowRestrictedH (partner attribute: (partner attribute:
eaders) prevent_cononicalization_for_ | remove_cms_algorithm_
mic) protection_attrib)
IBM Sterling false true
IBM Datapower false true
Mendelson false true
Seeburger ? ? ?
Oracle Integration false false false
B2B

9. Remote Control

By default the OpenAS2 server application will start up a command processor as a socket listener
allowing remote connection to the OpenAS2 server to execute commands. The OpenAS2 remote
application is part of the application package but is not necessary to use it if you have no remote
access requirement and should be disabled in the config.xml file if not using it by removing or
commenting out the <commandProcessor> element with classname value
org.openas2.cmd.processor.SocketCommandProcessor

You can set the port that the command processor listens on using the portId parameter.

<commandProcessor
classname=""org.openas2.cmd.processor.SocketCommandProcessor" portld="14321"
userid="userID" password="pwd"/>

The remote control application will need to connect to the specified port with the specified user ID
and password.

The connection uses an anonymous secure socket cipher and may require changing this if your Java
implementation does not support the default cipher which is
TLS_DH_anon_WITH_AES_256_CBC_SHA for the latest release. This cipher is not available in
older Java versions and it may be necessary to switch to SSL._DH_anon_WITH_RC4_128_MD5

To switch cipher you will need to start the OpenAS2 server and the remote command client passing
the cipher name as a system property using the -D switch that can be added to the batch script that
starts the application. The property must be named “CmdProcessorSocketCipher”.

e.g java -DCmdProcessorSocketCipher=SSL_DH_anon_WITH_RC4_128_MD5 ..

10. Dynamic Variables

Variables can be used in configuration files for real time replacement of strings. Some variables are
specific to certain processor modules. The variables used in the configuration files are as follows:

$date.xxx$::: for date parameters
where xxx is any valid character formatting string defined in
java.text.SimpleDateFormat

for example: $date.YYYY$ gets the four digit year

$msg.xxx.yyy$, accesses various information about the incoming message, used by
MessageFileModule. The available options for this format of dynamic variable are:

1. $msg.sender.as2_id$ - retrieves the AS2 ID of the sender of the message

2. $msg.receiver.as2_id$ - retrieves the AS2 ID of the receiver of the message

3. $msg.attributes.yyy$ - used to access any attribute on the message where the attribute
identifier is used in place of “yyy”
for example

4. $msg.headers.yyy$ - used to access any header on the message where the header
identifier is used in place of “yyy”

5. $msg.content-disposition.yyy$ - used to access any content-disposition attribute in the
message content disposition where the attribute identifier is used in place of “yyy”
Some attriutes commonly found in an AS2 message content disposition include
= filename — the original name of the file that was sent

$mdn.zzz$ for message mdn parameters, used by EmailL.ogger and MDNFileModule
where zzz can be any of the following values to get

* msg — requires “zzz” to be in the form “xxx.yyy” and can access data points as
defined for $msg.xxx.yyy$ format dynamic variables above

* sender — gets the as2_id of the sender

* receiver — gets the as2_id of the receiver

* text - gets the text portion of the MDN

 attributes — requires “zzz” to be in the form “xxx.yyy” and can access data
points as defined for $msg.xxx.yyy$ format dynamic variables above

* headers — requires “zzz” to be in the form “xxx.yyy” and can access data points
as defined for $msg.xxx.yyy$ format dynamic variables above

for example: $mdn.text$ gets the text portion of the MDN

$rand.zzz$ can be used on any string parsed for parameters to produce a random UUID or a
0 padded random number of a defined number of digits
where zzz can be any string of any number of characters
* if the string is “UUID” or “uuid” (e.g $rand.UUID) then it produces a random
UUID
 for any other string of characters other than UUID, the number of characters in
the string determines the number of digits in the random number that is
generated and will be zero padded
* e.g $rand.1234 - creates a random number between 0000 and 9999
* e.g $rand.ax1fgdc5 - creates a random number between 00000000 and
99999999

$exception.xxx$, used by EmailLogger
where xxx can be any of the follow ing values to get
* name
* message
* trace
* terminated

for example: $exception.trace$ gets the trace log of the exception

11. Appendix: config.xml file structure

* Node: openas2
¢ Node: certificates

Attributes

classname
describes the Java class to process the certificate file.
for example: org.openas2.cert. PKCS12CertificateFactory
filename
defines the file name containing the certificates
for example: %home%/certs.p12
password
opens the file using this password
for example: test
NOTE: this can be overriden using a java system property
when starting the application:
-Dorg.openasZ2.cert.Password=<somePassword>
interval
describes how often the file should be check up for updates. Specified
in seconds.
for example: 300
* Node: partnerships

Describes the OpenAS?2 classes to handle the trading partner identifications.

Attributes

classname
describes the Java class to process the partnerships file
for example: org.openas2.partner. XMLPartnershipFactory
defines the file name containing the partnerships definitions
describes
for example: %home%/partnerships.xml
* Node: loggers

Describes the OpenAS2 logging classes to use. You must include
-Dorg.apache.commons.logging.L.og=org.openas2.logging.L.og in your startup
call or as a property in the commons-logging.properties file. See
http://commons.apache.org/logging/guide.html#commons-logging-api.jar for
more information.

Do not use this node when using other logging packages (e.g. log4j) with the
OpenAS?2 package.

* Node: logger (for E-mail logging)
Optional, if not specified no E-mail logging is performed.

Attributes

classname
describes the Java class to process E-mail logging
for example: org.openas2.logging.EmailLogger
show (Optional)
describes what level of logging to handle
Possible values
 all = all exceptions (terminated or not) and info
* terminated = all terminated exceptions Default value
» exceptions = all non-terminated exceptions

for example: terminated
from
defines the source email address
for example: logger@openas2.org
from_display
defines the displayed text of the source email address
for example: Openas?2
to
defines the recipient email address
for example: your@e-mailaddress.com
smtpserver
describes the SMTP server to process outgoing e-mail
for example: mySillyMailerDot.com
smtpport
defines the SMTP server port to connect to
for example: 587
smtpauth
defines whether authentication is required for the SMTP server
(Possible values: true, false)
for example: true
smtpuser
defines user name if authentication is required for the SMTP
server

smtppwd
defines user password if authentication is required for the SMTP
server

subject
describes the e-mail to the receiving party
for example: $exception.name$: $exception.message$ (only
relevant a specific exceptions type)

bodytemplate
defines the file that contains the body of the message
for example: %9home%/emailtemplate.txt

* Node: logger (for file logging)

Optional, if not specified no file logging is performed.

Attributes

classname
describes the Java class to log messages
for example: org.openas2.logging.FileLogger
filename
defines the name of the output log file.
for example: %home%/log-$date. MMddyyyy$.txt
show (Optional)
describes what level of logging to handle
Possible values
 all = all exceptions (terminated or not) and info Default
value
* terminated = all terminated exceptions
» exceptions = all non-terminated exceptions
* info = all info log entries

for example: terminated
* Node: logger (for Console logging, writes to System.out)

Optional, if not specified no console logging is performed.

Attributes

classname
describes the Java class to log messages
for example: org.openas2.logging.ConsoleLogger
show (Optional)
describes what level of logging to handle
Possible values
* all = all exceptions (terminated or not) and info Default
value
* terminated = all terminated exceptions
* exceptions = all non-terminated exceptions
* info = all info log entries

for example: info
Node: commands

Describes the OpenAS2 command classes to use

Attributes

classname
describes the Java class to process the command file
for more information see Command File
for example: org.openas2.app.XMLCommandRegistry
filename
defines the name of the file command all possible commands
for example: %home%/commands.xml
Node: processor

Describes the OpenAS2 class to handle the message processors.

Attributes

file:///projects/OpenAS2/Downloads/OpenAS2_20100816/doc/configurationDefinitions.html#commandFile

classname
describes the default Java class to handle outgoing message
for example: org.openas2.processor.DefaultProcessor
* Node: module

Module that sends out AS2 messages.

Attributes

classname
describes the Java class to send outgoing Messages
for example: org.openas2.processor.sender.AS2SenderModule

retry
defines the number of attempts for sending a message,default is
-1 aka infinite.
for example retries="3" will stop sending the message after 3
failures.

connecttimeout
defines the millisecond count before a connection times out.
default value is 30000 or 30 seconds.
for example connecttimeout="60000" will time out after 60
seconds.

readtimeout
defines the millisecond count before a read times out. default
value is 30000 or 30 seconds.
for example readtimeout="60000" will time out after 60
seconds.

* Node: module

Module that sends out AS2 MDNSs asynchronously.

Attributes

classname
describes the Java class to send asynch MDN
for example:
org.openas2.processor.sender.AsynchMDNSenderModule

retry
defines the number of attempts for sending a message, default
value is -1 (infinite.)
for example retries="3" will stop sending the message after 3
failures.

connecttimeout
defines the millisecond count before a connection times out.
default value is 30000 or 30 seconds.
for example connecttimeout="60000" will time out after 60
seconds.

readtimeout
defines the millisecond count before a read times out. default
value is 30000 or 30 seconds.
for example readtimeout="60000" will time out after 60
seconds.

* Node: module

The following will describe a module to process outgoing message placed in
a generic directory. The module determines the receiver and send from the file
name placed in the directory (see format attribute). This module will look for
files in specified directory and file names to send to the default message
processor.

Attributes

classname
describes the Java class to process files to be sent to the
AS2SenderModule for its delivery process.
for example:
org.openas2.processor.receiver.AS2DirectoryPollingModule
outboxdir
defines the directory where files are to be found.
for example: %9home%/toAny
fileextensionfilter
defines the extension of the file name if file filtering is required.
The system will prefix the text entered in this attribute with a
period and only files matching that extension will be picked up

by the polling module
for example: txt - this will only find files like test.txt but not
mytxt

errordir

defines directory where files containing errors are redirected to.
for example: %9home%/toAny/error

interval
describes how often the directory is to be checked for work.
Specified in seconds. Default is 30 seconds.
for example: 5

delimiters
defines the characters used to parse the incoming file name.
Characters are separate the tokens: sender, receiver and file id.
for example: -.

format
describes the file name by the tokens sender, receiver and file id.
May be in any order. Sender id and receiver id are as defined in
the partnership.xml file.
for example: sender.as2_id, receiver.as2_id, attributes.fileid
or attributes.mimetype, attributes.mimesubtype, sender.name,
receiver.name

mimetype
describes the outgoing message mime message type.
for example: application/EDI-X12

* Node: module

Attributes

classname
describes the Java class to process files for a particular trading
partner that are sent to the AS2SenderModule for its delivery

file:///projects/OpenAS2/Downloads/OpenAS2_20100816/doc/configurationDefinitions.html#messageFormat

process.
for example:
org.openas2.processor.receiver.AS2DirectoryPollingModule

outboxdir
defines the directory where outgoing message are defined.
for example: %home%/toOpenAS2A/

errordir
defines the directory where erroneous messages are left.
for example: %9home%/toOpenAS2A/error

interval
describes how often the incoming directory is searched. Defined
in seconds, default is 30 seconds.
for example: 5

defaults
describes the AS2 sender and receiver ids as defined in the
partnership.xml file.
for example: defaults="sender.as2_id=OpenAS2A_OID,
receiver.as2_id=OpenAS2B_OID"

protocol
describes the AS2 protocol, which is AS2.
for example: as2

mimetype
describes the outgoing message mime message type.
for example: application/EDI-X12

* Node: module

Attributes

classname
describes the Java class to process incoming MDNs
for example: org.openas2.processor.storage. MDNFileModule
filename
describes
for example: %home%/mdn/$date.yyyy$/$date. MM$/
$mdn.msg.sender.as2_id$-$mdn.msg.receiver.as2_id$-
$mdn.msg.headers.message-id$
protocol
describes
for example: as2
tempdir
describes
for example: %9home%/temp
* Node: module Defines the module to handle messages.

Attributes

classname
describes the Java class to process and store incoming messages
for example:
org.openas2.processor.storage.MessageFileModule

filename
describes the location and formatted filename of the stored

MDNs.
for example: %home%/inbox/$msg.sender.as2_id$-
$msg.receiver.as2_id$-$msg.headers.message-id$
protocol
describes the AS2 protocol
for example: as2
tempdir (Optional)
defines temporary directory used to store MDNs during message
processing.
for example: %9home%/temp
* Node: module

Attributes

classname
describes the Java class to process handle incoming transfers
for example:
org.openas2.processor.receiver.AS2ReceiverModule
port
defines the port the server listens on.
for example: 10080
errordir
defines directory where invalid incoming messages are stored.
for example: %home%/inbox/error
errorformat
defines the format of filenames for invalid incoming messages.
for example: sender.as2_id, receiver.as2_id, headers.message-id
protocol
optional and defaults to “http” if not present
set to “https” for SSL transport protocol
ssl_protocol
optional and defaults to “TLS” if not present
set to preferred SSL transport protocol
for example: SSLv3
ssl_keystore
The name of the file including path containing SSL certificate
only required for “protocol” attribute set to “https”
for example: %home%/ssl_certs.jks
ssl_keystore_password
The password to open the SSL keystore
only required for “protocol” attribute set to “https”
for example: mySecretPassword
NOTE: this can be overriden using a java system property
when starting the application:
-Dorg.openasZ2.sslPassword=<somePassword>
* Node: module

Attributes

classname
describes the Java class to send asynchronous MDN response
for example:

org.openas2.processor.receiver.AS2MDNReceiverModule
port
defines the port the server listens on.
for example: 10080
protocol
optional and defaults to “http” if not present
set to “https” for SSL transport protocol
ssl_protocol
optional and defaults to “TLS” if not present
set to preferred SSL transport protocol
for example: SSLv3
ssl_keystore
The name of the file including path containing SSL certificate
only required for “protocol” attribute set to “https”
for example: %home%/ssl_certs.jks
ssl_keystore_password
The password to open the SSL keystore
only required for “protocol” attribute set to “https”
for example: mySecretPassword
NOTE: this can be overriden using a java system property
when starting the application:
-Dorg.openas2.ssIPassword=<somePassword>

¢ Node: module

Attributes

classname
describes the Java class to rehandle messages
for example:
org.openasZ2.processor.resender.DirectoryResenderModule
resenddir
defines the directory to find message to resend
for example: %9home%/resend
errordir
defines the director to store resend messages that are in error.
for example: %home%/resend/error
resenddelay
defines the wait time between resends. Defined in seconds.
Default is 60.
for example: 600

12. Appendix: partnership.xml file structure

This file describes your company and your trading partners. This file requires modification to work
with your application

* Node: partnerships
The root node.
* Node: partner

partner definition
Attributes

name
partner name as defined in OpenAS2 configuration file.
OpenAS2A

as2_id
partner name as defined in partnership node
OpenAS2A

x509 alias
Alias as defined in certificate file
openas2Za

email
E-mail address of partner
as2a@MysSillyMailerServer.com

Node: partnership
defines partner relationships between sender and receiver
* Node: partnership
Attributes

name
Unique name of partnership relation. See filename parsing above.
OpenAS2A-OpenAS2B

* Node: sender

Attributes

name
Unique name of Sender
OpenAS2A

* Node: receiver

Attributes

name
Unique name of receiver
OpenAS2B

The following is a list of nodes that use the node name of attribute. The
subnodes of attribute use a name/value node naming pair structure.

* Node: attribute
name is protocol defines the protocol to use with this partner.
value is as2
name="protocol" value="as2"
* Node: attribute
name is subject defines text used in E-mail subject line
value
name="subject" value="From OpenAS2A to OpenAS2B"
* Node: attribute
name is as2_url defines partners AS2 server's URL

mailto:as2a@MySillyMailerServer.com

value
name="as2_url" value="http://www.MyPartnerAS2Machine.com:10080"/>
* Node: attribute
name is as2_mdn_to when set this specifies that an MDN response is
required and defines value of the “"Disposition-Notification-To" header
in the AS2 message sent to the partner. It is normally an email address but can
be any string that is meaningful
value
name="as2_mdn_to" value="datamanager@mypartner.com"
* Node: attribute
name is as2_receipt_option defines asynchronous MDN server's URL
value
name="as2_receipt_option" value="http://www.MyAS2Machine.com:10081"
* Node: attribute
name is as2_mdn_options defines MDN option values for E-mail header
value
name="as2_mdn_options" value="signed-receipt-protocol=optional, pkcs7-
signature; signed-receipt-micalg=optional, shal"
* Node: attribute
name is encrypt defines encrypting algorithm name for E-mail header
value
name="encrypt" value="3des"
* Node: attribute (optional)
name is content_transfer_encoding defines what the header field should
display
value 8bit (default), binary, ...
name="content_transfer_encoding" value="binary"

* Node: attribute (optional)
name is compression_type if defined it determines what the type of
compression to use. Leave this attribute out if no compression is required
value ZLIB (default) — no other supported options
name="compression_type" value="ZLIB"

* Node: attribute (optional)
name is compression_mode if defined it determines when compression
occurs. If this attribute is not specified then compression occurs before
signing.
value — “compress-after-signing”
name="compression_mode" value="compress-after-signing"

13. Appendix: command.xml file structure

List of commands available to the OpenAS2 server Application.

Node: commands the root node
¢ Node: multicommand

attribute

name
value "cert|part”, certificate commands or partnership commands
description
value is some useful text
* Node: command

attribute

classname
value is a OpenAS2 classname that will process a command

	1. Introduction
	2. Glossary
	3. Installing OpenAS2
	3.1. System Requirements
	3.2. Installing Application
	3.3. Tuning Java

	4. Configuration
	4.1. Application Configuration
	4.1.1. Overriding Certificate Store Password
	4.1.2. Resend Retry Configuration

	4.2. Partner Configuration
	4.2.1. Partner Definition
	4.2.2. Partnership Definition
	4.2.3. Transfer Encoding
	4.2.4. Supported Encoding Algorithms
	4.2.5. Message Compression
	4.2.6. Custom Mime Headers
	4.2.6.1. Static Header Values
	4.2.6.2. Dynamic Header Values From File Name
	Delimiter Mode
	Regular Expression Mode

	4.2.6.3. Adding Custom Headers To HTTP

	4.2.7. Setting Dynamic Attributes From File Name

	4.3. Certificate Configuration
	4.3.1. Creating And Importing
	4.3.2. Supporting Multiple Private Certificates

	4.4. Logging System
	4.4.1. Log Level Configuration
	4.4.2. Email Logging Configuration

	4.5. MDN Configuration
	4.5.1. Asynchronous MDN Receiver Configuration
	4.5.2. Asynchronous MDN Sender Configuration

	4.6. Configuring HTTPS Transport
	4.6.1. Inbound Transfers
	4.6.2. Outbound Transfers

	4.7. Message State Tracking

	5. Running OpenAS2
	5.1. Starting OpenAS2
	5.2. Command Entry
	5.3. Automated Launching As UNIX Daemon
	5.3.1. INIT.D Service
	5.3.2. SYSTEMD Service

	6. Testing OpenAS2 Transfers
	6.1. Using HTTPS Transport

	7. Troubleshooting OpenAS2
	7.1. Canonicalization For MIC Algorithm
	7.2. Binary Encoding
	7.3. HTTP Restricted Headers
	7.4. CMS Algorithm Protection
	7.5. SSL Certificate Exceptions
	7.6. Java Versions Prior To 1.6
	7.7. Mime Body Part Logging
	7.8. TLSv1.2

	8. Partner AS2 Compatibility Settings
	9. Remote Control
	10. Dynamic Variables
	11. Appendix: config.xml file structure
	12. Appendix: partnership.xml file structure
	13. Appendix: command.xml file structure

